

# Tri-State Mining District Oklahoma, Kansas & Missouri







## Tri-State Mining District



Oklahoma, Kansas & Missouri Senior Management Review 8 November 2000

Elizabeth A. Buckrucker
Project Manager
U.S. Army Corps of Engineers
Kansas City District



# Tri-State Mining District Site History



- Consists of Three Areas:
  - Ottawa County, OK
  - Cherokee County, KS
  - Jasper and Newton Counties, MO
- Mining/Milling from 1850s to 1970s
- 2,500 square miles with 300 miles of Tunnels
- 500 Million Tons of Ore Produced
- 165 Million Tons of Waste over 7,600 Acres









## Oronogo-Duenweg Mining Belt Site Jasper County Superfund Site



- Located within the Tri-State Mining District
- 160 million tons ore production: lead and zinc
- Covers 270 square miles
- 100 million tons of waste remain on site
   waste rock, chat, and fine tailings
- Residuals metals contain lead, cadmium and zinc
- Seventeen smelters were located within the site
  - One for over 100 years (Eagle-Picher)

# Oronogo-Duenweg Mining Belt Site Jasper County Superfund Site Jasper County Mine Waste Areas and Smelter Zone



## Jasper County Superfund Site USEPA Activities



- Site was placed on the NPL in 1990
- Many studies followed, including:
- MO Dept. of Health conducted sampling of children under the age of six
  - 14% of these children had elevated blood-lead concentrations (> 10 ug/dl)
- EPA contracted studies to determine horizontal/vertical extent of lead-contaminated soils; secondary emphasis on cadmium and zinc



## Jasper County Superfund Site USEPA Activities



- EPA Studies concluded:
  - smelter fallout partially responsible for elevated blood lead;
  - yard lead levels up to 10,000ppm
  - 2,700 yards exceeding action level
- Data used by EPA to determine priorities and eligibility for time critical soil removal and subsequent remedial action
- Time critical removal occurred from March 1995 to March 1996



## Jasper County Superfund Site Going Up In A Can







## **Jasper County Superfund Site USEPA Activities**



- The following were remediated during time-critical removal actions:
  - 10 day-care facilities
  - 293 residences
- Residences remediated met either the child blood lead or soil lead levels established by EPA to qualify for time-critical removal
- Community involvement and education ongoing



## Jasper County Superfund Site (3) Corps of Engineers Role



- IAG for pre-ROD technical support to COE in April 1996; ROD signed in August 1996
- First contract awarded in May 1996 for treatability study support/access agreement support
- Extremely fast paced for COE; different "mindset"
  - In-house "design"; typical plans and specs not prepared
  - Cost reimbursable contract
  - Performance based service contracting
  - Internal struggles; "out of the box" thinking required



## **Jasper County Superfund Site** Were we on the Right Track?







## Jasper County Superfund Site Project Factors/Issues



- Magnitude of Contamination
  - Number of residences exceeding action level
- Soil Disposal Options
- Contracting Strategies Labor Force
- Community Acceptance of Remedy





## Jasper County Superfund Site (3) **Project Approach**



- Team Effort between EPA, MDNR, COE, and Contractor
- Establish On-Site Disposal Area
- Early Community Involvement
  - Continued Advisory Group, Partnerships
  - Local Health Department coordination
- Use Contract with Incentives to Earn Fee
  - Hire local personnel
  - Use XRF for sampling



## **Jasper County Superfund Site** Corps of Engineers Role



- COE Accomplishments:
  - Entire contracting period (request for proposal to award) 60 days - with 2 week delay for \$\$
  - Entire process; from Pre-ROD Support to RA Field Start - 180 days
- Many concurrent actions
- This was the first cost-reimbursable, award fee contract performed by the Kansas City District



## Jasper County Superfund Site (3) **Lessons Learned**



- Design:
  - BCO Certification/Real Estate
  - Formal Plans/Specs vs. PBSC Work Statement
- Construction:
  - Relationship with Contractor COE "in the Contractor business"; we WERE and we stayed that way
  - Oversight/Involvement required at costreimbursable sites by the Corps



## Jasper County Superfund Site Some Days Were Tough





## Jasper County Superfund Site (3) **Lessons Learned**



- Award Fee Plan based heavily on cost per property, quality, and production rate
  - Measured at negotiated timeframes during remediation (end of each 3 month period)
  - Low Base Fee; to highly motivate Contractor
  - EPA and Corps rated the Contractor
- Stressed Use of Local Personnel; Local Union Operators
  - No Travel Costs
  - High Quality Workers



## Jasper County Superfund Site **Lessons Learned**



- Utilized XRF Extensively
  - Trained Personnel in Use
  - Allowed for Instant Results; No Impact to Production
- Reporting/Cost Tracking tailored to EPA and COE needs:
  - Kept Clear and Concise since everything asked for EPA paid for!
- Entire Team constantly strives to improve efficiency - and lower overall costs
- Using GIS to maintain master DB/Drawings



## Jasper County Superfund Site **Excavation Operations**













# Jasper County Superfund Site Current Status



\$18.7M

#### **STATUS**

 Duration - 48 Months to Date November 1996 RA Start

 Total Homes Completed 1940

 Ave. Cost Per Home \$10.2K Total Amt. Paid to Contractor

Corps Costs (S&A, EDC) \$ 1.4M

• 6.9% of RA Costs





# JASPER COUNTY GIS SITE MAP STRATEGY



- "Smelter Zone"
- Sectional Maps for Quick Reference
- Combined Multiple DB's into Master DB
- Query Capable for all Property Status





## JASPER COUNTY GIS



- GIS Provides Access DB linked to Arcview Files
- Drawings Updated as DB is Updated
- Quick Graphical Views of Query Results
- Placing on Secure Web Server as a Test;Available to Project Personnel









## TRI-STATE MINING DISTRICT Oklahoma Portion



- 40 Square Miles Designated as Part of Tar Creek Superfund Site
- Includes Picher, Cardin, Quapaw, Commerce, and North Miami
- 60 Million Tons of Chat Remain
- Most of Area is in Tar Creek Watershed





## **Complicating Factors**



Oklahoma Portion of Tri-State Mining District

- Indian Land 8 Tribes
- State Land Ottawa County Reclamation Authority
- Mine Drainage Surfaces in Oklahoma
- Poor Drainage in Several Communities



## **Cleanup Strategy**



- Surface and Ground Water Contamination
   OU1 1984 ROD
- Mining Waste in Residential Yards OU2 -1997 ROD
- Non-Residential Properties (Waste Piles, Tailings Ponds, Industrial Properties) -OU3+ - Under Study



## **Post-Mining Environmental** Problems - Water



- 1979: Mine Drainage Surfaces
- Governor's Task Force
- Concerns with Contamination of Surface Water and Ground Water
- 1983: Tar Creek Site Listed on Superfund National Priorities List



## State/EPA Superfund Actions to **Address Water Issues**

- 1984 Remedy
- Surface Water Diversions
- Plugging Abandoned Wells
- Recompletion of City Water Wells



## Post-Mining Environmental Problems - Soil



- 1994: I HS blood lead screening showed elevated levels in 35% of children
- 1995: EPA initiated removal of leadcontaminated soil
- Approximately 2,100 properties contaminated





## Residential Soil Cleanup General Approach



- Removal at High-Access Areas and Yards > 1,500 ppm Pb Began June 1996
- ROD Issued September 1997
- Remedial Action Began January 1998





### **Removal Effort**



- Began June 1996
- EPA used I AG with COE
- COE used TERC contract mechanism
- 250 Properties Addressed
- Average Cost \$24,100 per Property



### **Remedial Action**



- Remedial Program Assumed Lead in January 1998
- 1,800 properties remained to be addressed
- Decided to pilot Performance-Based Contracting Approach
- Wanted smooth transition and maximum removal/remedial consistency

## Performance-Based Approach

- Used IAG with COE for consistency
- COE used TERC contract vehicle
  - Same contractor as removal
- EPA/COE work group developed contract approach in Fall 1997
- Regions 6 & 7, HQ, and COE Tulsa and Kansas City Districts had input
- Was first Superfund PBC pilot approved by OMB

# Areas of Emphasis in Developing Performance Standards

- Quality of work ensuring technical specifications were met
- Minimizing time spent on each property
- Smooth transition from removal to remedial



















## Major Problem Areas

- Contract was structured to ensure quality of work, not efficiency of operation
- Oversight of contractor was lacking
- Procedures carried from removal to remedial phase led to inefficiency
- Response to homeowner complaints was lacking







# Major Problem Areas (continued)



- Comparison to removal costs gave false sense of security
- Procedural changes to save costs were not always implemented
- I AG lacked incentives for good project management



## "Duration" Standard



 Complete properties within 9 work days (more days allowed for removals of more than 250 cu. yd.)



# Problems with "Duration" Standard



- Wet-weather days are not counted; non-work days are not counted; during wet season, properties can remain "open" for over a month and still meet the "9 day standard"
- All-or-nothing measure no incentive to complete in less than 9 days; 10 days is the same as 6 months



## **Possible Alternative**



 Average completion time per property (total calendar days from start to finish, including wet weather days and non-work days)



### **Lessons Learned**







## **Lessons Learned - PBC**



- Crafting of Performance Standards language is critical - you're "locked in" after it's finalized
- I nclude performance standards which create incentives for the contractor to save money and be efficient
- Measure averages over time rather than propertyby-property performance
- Focus on end results

## Lessons Learned - Oversight



- Effective oversight of construction contractors is critical
- Continuity can work against you what's good for removal may not be good for remedial
- Take extent of local hiring into account when developing oversight plans



### Other Lessons Learned



- Don't use removal phase as yardstick for cost comparison - look to other remedial sites
- Complaint response is critical to success
- Beef up incentives/penalties in I AGs



